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An error estimation and grid adaptive strategy is presented for estimating and re-
ducing simulation errors in functional outputs of partial differential equations. The
procedure is based on an adjoint formulation in which the estimated error in the
functional can be directly related to the local residual errors of both the primal and
adjoint solutions. This relationship allows local error contributions to be used as
indicators in a grid-adaptive strategy designed to produce specially tuned grids for
accurately estimating the chosen functional. In this paper, attention is limited to
one-dimensional problems, although the procedure is readily extendable to multiple
dimensions. The error estimation procedure is applied to a standard, second-order,
finite volume discretization of the quasi-one-dimensional Euler equations. Both isen-
tropic and shocked flows are considered. The chosen functional of interest is the in-
tegrated pressure along a variable-area duct. The error estimation procedure, applied
on uniform grids, provides superconvergent values of the corrected functional. Re-
sults demonstrate that additional improvements in the accuracy of the functional can
be achieved by applying the proposed adaptive strategy to an initially uniform grid.
The proposed adaptive strategy is also compared with a standard adaptive scheme
based on the interpolation error in the computed pressure. The proposed scheme
consistently yields more accurate functional predictions than does the standard
scheme.© 2000 Academic Press
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1. INTRODUCTION

The use of computational simulations in the prediction of complex aerodynamic floy
is becoming increasingly prevalent in the design process within the aerospace indu:
Continuing advancements in both computing technology and algorithmic development
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ultimately leading to attempts at simulating ever-larger, more complex problems. The e
ciency of the underlying computational algorithms is critical and is often the limiting fact
in the applicability of computational fluid dynamics as a viable analysis tool in desig
Among the difficulties associated with increased problem complexity are the large num
of degrees of freedom required to accurately predict the flow field.

Awell-known strategy for minimizing the required mesh size for a given level of accura
is grid adaptation [3, 5, 10, 16, 18, 26—29]. The basic premise is to locally enrich the g
in regions which most adversely affect the accuracy of the final solution while coarsen
the grid in more benign regions to prevent incurring unnecessary computational cost:
major difficulty in achieving definite improvements using adaptation for Euler and Navie
Stokes calculations is the lack of a reliable error indicator. A common strategy is to ad
to certain physical features of the flow, such as shock waves, slip lines, or stagna
points, by employing indicators based on large flow gradients [3, 27]. This approact
quite straightforward to implement since the indicators can be computed directly from
evolving flow field, which is readily available. However, continuous local refinement of tt
dominant flow features does not necessarily guarantee that certain measures of the g
error will simultaneously be reduced. In certain cases this procedure may even lea
incorrect results [27]. Another strategy is to develop adaptive criteria baseg@asteriori
error estimates [1, 4, 5, 8, 10, 13, 14, 17, 19, 26, 28-30]. A common approach [10,
29] has been to use local gradient recovery techniques to obtain higher order project
of the solution gradients. The solution is then compared with the higher order project
to assess the error. For elliptic problems and, in particular, finite element methods,
procedure provides rigorous error estimates based on particular norms of the solution ar
derivatives. Unfortunately, for convection-dominated problems, such as those encount
in aerodynamic applications, these error estimates can no longer be made rigorou:
addition, even within the setting of finite-element-discretized, elliptic problems, one c
argue that a global error norm based directly on the solution and its derivatives may no
optimal within an engineering context.

An alternate approach to making error estimation more relevant to engineering appl
tionsisto assessthe error made in predicting an integral quantity representing an engine
output. For example, in aerodynamic applications, this output might be the lift or drag.
this end, procedures have been outlined by Rannacher and collaborators [4, 5, 13], P
and Giles [19], Machielgt al. [14], and Venditti and Darmofal [26]. They are based on
concepts already known from structural finite element methods [2]. These procedures
voke the concept of duality, in which an equivalent dual (adjoint) formulation of the prim
problem is exploited. The primary benefit of invoking the dual problem, in the context
error estimation, is that the error in a chosen functional can be directly related to lo
residual errors of the primal solution through the adjoint variables. More precisely, the er
can be expressed as an inner product of the local residual errors and the adjoint varia
This property elucidates the potential for devising optimal grid adaptive strategies desig
to produce specially tuned grids for maximizing the accuracy of a particular functional.

There are two common approaches to formulating the dual problentaiignuous
approach and thdiscreteapproach. In the continuous approach an objective function
formed by augmenting the functional of interest with Lagrange multipliers (adjoint val
ables) to enforce the flow constraints (the original primal, nonlinear, partial different
equations). The next step is to consider linear perturbations to the primal flow variables
to require that the objective function remains stationary with respect to these perturbatit
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The analytical adjoint equations are forthwith obtained, together with appropriate bound
conditions, and are then discretized directly. One benefit to the continuous approach is
it more readily offers insight into the nature of the adjoint solution [9]. In the discrete a
proach one begins with the nonlinear, discrete residual equations associated with the pr
problem and then considers linear perturbations to these. The resulting linear syster
equations also yields a consistent approximation of the adjoint solution. A convenience
sociated with the discrete approach is that the adjoint equations and corresponding boun
conditions need not be derived and discretized explicitly. All that is needed are the lin
sensitivities of the functional and the Jacobian matrix associated with the primal resid
The adjoint boundary conditions are automatically incorporated into the formulation via t
primal residual operator. Many existing Euler and Navier—Stokes codes (especially th
that employ adjoint-based optimization algorithms [6, 12, 15]) already have much of t
machinery that would be required to implement an adjoint error estimation/grid adaptat
procedure such as the one described in this paper.

The main contributions of this paper are summarized in the following. A new metho
ology is presented which uses the discrete adjoint solution to relate local errors in
flow solution to the global error in the functional of interest. The method of Pierce at
Giles [19] also uses the adjoint solution for this purpose; however, their approach use:
analytic viewpoint whereas the current formulation is cast in a discrete framework. T
two approaches are closely related under certain conditions that will be elaborated upc
Section 2. A convenience associated with the current approach is that the error contribu
from the domain boundary is automatically incorporated into the expression for the cc
putable error estimate. In the method of Pierce and Giles, additional error terms may
required to account forinhomogeneous boundary conditions [19]. There are also advant
and disadvantages associated with the ease of implementation of the two approaches.
will also be addressed in Section 2. Both the current approach and the method of Pi
and Giles have the advantage of being applicable to general discretizations, whereas
procedures are implicitly linked to a particular discretization such as the finite eleme
method [4, 5, 13, 14, 17]. Another contribution presented in this paper is the use of adjc
error analysis to derive criteria for driving a grid-adaptive process. Our intention is to ft
ther improve the accuracy of the predicted functional by coupling the aforementioned el
estimation procedure with an adjoint-based grid-adaptive strategy. The adaptive stra
incorporates the novel use ofdaality gap which, among other things, quantifies certain
nonlinear contributions to the global error in the functional.

The organization of the paper is as follows: First, the proposed error estimation procec
is outlined. Inthe first stage of the procedure, we strive to estimate the value of a functiona
a fine grid without actually solving on this grid. The only auxiliary computations required 1
calculate this estimate are functional and residual evaluations on the fine grid and the solt
of a linear adjoint problem on a coarse grid. The second stage of the estimation proce«
involves estimating the exact value of the functional using multiple fine-grid estimates i
multilevel extrapolation process. The error estimation procedure is tested on a finite volt
discretization of the quasi-one-dimensional Euler equations on uniform grids. Results
presented for three test cases: subsonic flow, isentropic transonic flow, and shocked tran:
flow through a converging—diverging duct. The functional of interest in each case is 1
integrated pressure along the duct. Next, we proceed to outline the adaptive methodol
The primary objective of the proposed adaptive strategy is to improve the accuracy
the aforementioned error estimation procedure to obtain a more accurate functional
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correction. This is in contrast to other adaptive strategies that are designed to improve
accuracy of the computed functional directly. Robustness of the iterative adaptive proce
is also of concern in our choice of adaptive criteria. Finally, one-dimensional adaptive res
are presented and demonstrate that further improvements in the overall accuracy o
computed functional can be achieved using the proposed adaptive strategy in conjunc
with the error estimation procedure. The proposed adaptive strategy is also compared
a standard adaptive scheme driven by a measure of the interpolation error in the comp
pressure [3, 27]. Adaptive results using the proposed scheme are consistently more acc
than those of the standard scheme.

2. ERROR ESTIMATION PROCEDURE

Consider the coarse megh; as being an affordable mesh with respect to available con
puting resources and allowable solution times. The pararkttepresents a characteristic
length associated with the discretization such as the cell spacing in a finite volume sch
or the average element size in a finite element scheme. We are interested in estimatir
integral quantityf (U), whereU is the solution of the system of partial differential equations
(PDESs) under consideration. The approximation of this integrakgrusing a prescribed
guadrature rule is denoted by, (Uy), whereUy is the corresponding discrete solution
onQy.

Although fy (Uy) can be computed affordably, it may not be sufficiently accurate for tr
intended application. Now consider a fine méghas being a mesh that is too expensive for
the purposes of estimatinfyU ); however, if a discrete solutiddy, were obtained o2y,
the corresponding discrete integifal Uy, ) would be sufficiently accurate for our purposes.
We further require thaf2, be embedded withif2,. In other words 2y, is constructed,
locally, by subdividing each of the elements®y into an integer number of self-similat
subelements, where= (H/h)? andd is the number of spatial dimensions in the problem

Our goal is to obtain an accurate estimatdyfJ,,) without ever solving on the fine mesh
Qn. The point of departure in this analysis is a multiple variable Taylor series expansior
fr(Un) about the coarse mesh solution,

of
foUn) = fn(UH) + | (Up—UH) + - @)
Uh [y

The column vectoH represents the coarse mesh solution mapped onto the finetpesh
via some prolongation operator. The row vedtéy/oUy lup contains the linear sensitivities
of the fine-mesh functional evaluated usl . Introducing the prolongation operatiff,
we can write the vectdd as

The prolongation operatdrt interpolates or reconstructs the coarse-mesh solution al
maps it onto the fine mesh. The order of the prolongation should be greater than, ¢

least consistent with, the order of the discretization. An appropriate definitidgfoould

1 The requirement of self-similarity of sub-elements will need to be relaxed for certain types of grids as will
discussed below.
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depend on the underlying discretization method and on the classification (elliptic or hyp
bolic) of the PDE(s) being approximated. In the case of a finite difference discretizatic
11 could represent higher order interpolation through the computed nodal values of
coarse-mesh solution. In the case of a finite element discretizgfiarould represent in-
jection from the coarse-mesh basis functions directly or from a higher order projection
the finite element solution [19]. If the PDEs have a hyperbolic character to them, isodir
tional interpolation might lead to oscillatory behavior in an iterative adaptive procedure,
was initially encountered in the current implementation of the proposed adaptive strate
Alternative reconstruction approaches may be required to overcome this difficulty. Thi:
discussed further in Section 4.2.

The nonlinear residual operator representing the system of equations arising from s
discretization of the original partial differential equations on the fine mesh is denoted b

Ra(Un) = 0. 3
Linearizing about the coarse-mesh solution yields

0
Ra(Un) = Ry (U} 4+ 2R

S0 (U= Ui @

H
Uh

whered Rh/BUh|UhH is the Jacobian of the fine-mesh system of equations evaluated us|
U, Symbolically, we can invert (4) to obtain an approximation of the error vector (that i
the coarse-mesh-solution error measured with respect to the fine-mesh solution)

-1
IR
Uph— UM~ —| U, 5
(Un—Uy) lauhu;'] Rn(Up') (5)
Substituting (5) into (1) gives
fa(Un) & fn(Uf) — (Whlys) " Ra(U), 6)

where\lfh|UhH is the discrete adjoint solution satisfying

T T
of
Whlys = | : (7)
Ul 9 luy

Equation (6) is an estimate df,(Uy). It is exact for linear residuals and functionals. To
compute this estimate would require the solution of the adjoint problem on the fine me
which is undesirable. Instead’,hlutg is replaced by the interpolated coarse-mesh adjoin
LHwy, whereL! is a prolongation operator which expresses the coarse-mesh adjoint
the fine mesh by interpolation. Utilizing!, and the reconstruction operatgf, in (6)
yields the final, computable estimate as

dRy
U

fnUn) = f(I7'Un) = (L wn) "Ry (1 Un). (8)

whereWy, is obtained from the solution of the discrete adjoint equations on the coarse gt

ARy 1T af \ "
[M = (au) | ©)
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The coarse grid2y should be fine enough to capture the essential features of the probl
under consideration (that is, the corresponding discrete solutipshould be within the
asymptotic range) in order for the truncated expansions, (1) and (4), to be uniformly va
In practice, however, decent error estimates have been obtained on fairly coarse grid
will be demonstrated in Section 3.4 when the numerical results are presented.

We now describe a method of estimating the exact value of the functiqhBl. This is
achieved by utilizing two or more fine meshes in a multilevel error estimation procedt
similar to Richardson extrapolation [20]. A key distinction from Richardson extrapolation
that the current approach extrapolates error estimates as opposed to extrapolating dis
solutions computed on grids of different spacing. Thus, only one coarse grid solutior
required to apply this procedure. Furthermore, it is not restricted to uniform base-gri
Strictly, one could interpret the current procedure as a particular application of Richards
deferred approach to the limit [21].

Let p be the observed rate of convergence of the error in the coarse-grid functional.
define a series of fine mesh@g,,i =1, 2, ..., m, such that the corresponding character-
istic cell or element sizes satisfy > h;;. Furthermore, théth meshQ;, is constructed
by subdividing each of the elements®f; into an integer numbat; of self-similar subele-
ments, where; = (H/h;)4. The discrete functional on thiéh fine mesh can be estimated
using (8). This estimate is denoted here fay. The multilevel procedure is based on the
observation that the true error in the estimated functioﬁ@l,— f(U), computed from a
smooth base solution, converges life This may also be true for certain integral quantities
computed from discontinuous base-solutions including shocked flows [7]. Considering t
different fine meshes,= 1 andi = 2, we may, therefore, write

fi, — F(U) = chf + O(h]*™),

- (10)
fr, — f(U) =ch? + O(h5*).

Neglecting the higher order terms, eliminatiygand solving forf (U) yields theO(hP+1)
estimate as

(11)

Convergence rates even better tigaii P+1) have been observed for the test cases consider:
in this paper using the current estimation scheme.

It should be noted that constructing a hierarchy of fine grids in the manner sugges
above may not be possible for certain types of grids. For example, one cannot subdivi
tetrahedron into self-similar tetrahedra. In such cases, the condition of self-similarity of
subelements would have to be relaxed. One alternative approach, in the case of a tetrat
base-mesh, would be to first choose a systematic method of discretizing a single, arbit
tetrahedron into subtetrahedra. For example, a 1: 12 refinement ratio could be achieve
adding nodes to the midpoints of each of the edges of the original tetrahedron and by ad
one more node to its centroid. The application of this systematic refinement algorithrr
each tetrahedron in the base-mesh would thereby define an embedded fine mesh. Rec
repetition of this procedure would result in a hierarchy of grids where each successive |
would be embedded within the previous one.

We now briefly mention some differences between the proposed error estimation |
cedure and the adjoint-based correction method of Pierce and Giles [19]. The cur
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formulation is cast in a discrete framework whereas their approach uses an analytic vi
point. The two methods become closely related as the fineyrid the current procedure
becomes infinitely resolved (that is, las— 0). A convenience associated with the current
approach is that the error contribution from the domain boundary is automatically accoun
for in the error estimate given by (8). This is due to the fact that the boundary conditic
are already incorporated into the residual operator in the current formulation. In the metl
of Pierce and Giles, additional error terms may be required to account for inhomogene
boundary conditions [19]. With regard to the quality of the resulting error estimates, bc
approaches appear to give similar accuracy; however, additional work would be require
verify this.

Finally, we address the issue ofimplementing the proposed procedure into an existing 1
solver. Depending on the structure of the source code, it could be possible to implement
current procedure very rapidly into a flow solver that already computes the adjoint solut
(such as an adjoint-based, aerodynamic optimization code [6, 12, 15]), especially if
residual and functional operators are readily available. However, a naive implementatiol
the procedure would entail storing at least one embedded fine grid in its entirety in or
to avoid modifying the machinery of the code. This could become prohibitive in multip
dimensions. A memory-efficient implementation would necessitate more coding work
avoid storing an entire fine grid in memory. Thus the advantage of an easy implementa
would be lost unless memory were not an issue.

3. UNIFORM GRID RESULTS

The error estimation strategy outlined in the previous section is tested on the quasi
Euler equations using a standard second-order finite volume scheme on uniformly sp:
grids.

3.1. Quasi-1D Euler Equations

The quasi-1D Euler equations describe the flow of an inviscid, compressible, ideal |
through thin variable-area ducts [11, 23]. The steady-state equations may be written in
form

dFU)
T = J(U), (12)
whereU, F, andJ are given by
oA pV A 0
U= pVAS, F=< (pV2+pA,, J=< pdA/dx) 3. (13)
pEA pVh, A 0

In these expressiong,is the mass density, is the gas velocityp is the static pressuré,
is the total energ\h, = E + p/p is the stagnation enthalpy, ardx) is the cross-sectional
area of the duct. The system is closed with the equation of state for an ideal gas:

V2
p=p(y—1)(E—7), (14)
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FIG. 1. Nozzle geometry and computed Mach number distributions for the quasi-1D Euler test ca:
considered.

wherey is the ratio of specific heats. Three different test cases are considered: subs
flow, isentropic transonic flow, and shocked transonic flow through a converging—diverg
nozzle. These flows are depicted in Fig. 1 in terms of the Mach nuMberereM = V/c
andc = /yp/p is the local speed of sound. The nozzle geometry, also shown in Fig. 1,
symmetric about the throat location, with a lengthLof= 3 and a throat-to-exit area ratio
of 1:2.

3.2. Finite Volume Scheme

Solutions are obtained using a Newton—Raphson iterative technique applied to a ¢
centered finite volume scheme. Numerical fluxes are evaluated using Roe’s approxir
Riemann solver [22]. Second-order accuracy is achieved using variable extrapolation |
in conjunction with the van Albada limiter [24].

3.3. Functional of Interest

The functional of interest is chosen to be the integral of the pregsawer the domain:

L
f(U):/ pdx. (15)
0

This functional serves as an analogue for the lift in airfoil or aircraft computations [1¢
The pressure distributions for each of the flow regimes considered are plotted
Fig. 2. The discrete functional on all grids is computed using the two-point NewtitasC”
quadrature (Trapezoidal Rule integration). The computed adjoint variables correspon
to the chosen functional are plotted in Fig. 3. There are three adjoint variables,,

and W3, corresponding to the three conservation equations defined in (12) and (13). |
interesting to note that a logarithmic singularity exists in the adjoint variables at the so
throat for both the isentropic transonic and shocked flow cases. Their presence reflect
fact that the value of the integrated pressure is infinitely sensitive to a linear perturbat
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FIG.2. Computed pressure distributions along the nozzle for each of the quasi-1D Euler test cases consid
Left: subsonic flow; center: isentropic transonic flow; right: shocked flow.

in the flow variables at the choked throat. These singularities were observed by Giles
Pierce [9] in an analytical investigation of the properties of the continuous adjoint eqt
tions. Fortunately, the singularities have not resulted in a degradation of the error estime
as will be demonstrated below. It is also interesting to note that the adjoint variables
continuous across the shock and have zero gradient there [9].

3.4. Numerical Results

The error estimation procedure requires that an appropriate reconstruction opgriagor
defined to compute (8). The reconstruction operator must accurately represent the co:
grid solution at the embedded fine-grid cell centers. To achieve this, the coarse-grid solu
is assumed to vary over each coarse-grid cell in accordance with the variable extrapola
and limiting procedure used in the finite volume scheme. The coarse-grid solution at
center of an embedded fine-grid cell is obtained by direct injection from this limited, high
order reconstruction over the associated coarse-grid cell. While this method of reconst
tion works well for the error estimation procedure, it results in oscillatory behavior in tt
iterative adaptive procedure to be outlined in the next section. Alternative reconstructi
which take into account the hyperbolic character of the flow equations were implemen
and led to reductions in the oscillations; however, they came at the cost of reductions in
accuracy of the error estimates, in general. To maintain the quality of the error estimates
chose, instead, to control the oscillations using a local least squares smoothing techn

Adjoint Variables

FIG. 3. Computed adjoint flow solutions corresponding to the integrated pressure along the nozzle for e
of the quasi-1D Euler test cases considered. Left: subsonic flow; center: isentropic transonic flow; right: shoc
flow.
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FIG.4. Error convergence plots on uniform grids for the subsonic test case. In the left plot, errors are meas
with respect to finer grid values of the functional. In the right plot, errors are measured with respect to the e
(analytical) value of the functionalf(U) ~ 2.707).

and to retain the aforementioned limited, higher order reconstruction as the definitior
I for all the test cases in this paper.

The prolongation operatdr}!, used to express the coarse-grid adjoint onto the fine grit
was chosen as quadratic interpolation through adjacent coarse-grid cell centers. Li
interpolation also yields the same asymptotic convergence rates as quadratic interpol:
with only a slight degradation in the quality of the corresponding error estimates. T
choice of quadratic interpolation over linear interpolation was, therefore, quite arbitre
for the quasi-1D test cases and functional considered in this paper. It should be no
however, that for multidimensional problems and/or problems involving boundary-integ
functionals, the order of the prolongation operator should be greater than the orde
the corresponding discretization to ensure that the superconvergent property of the ¢
estimates is preserved [26].

A series of error convergence plots corresponding to the subsonic, isentropic transc
and shocked flow cases are presented in Figs. 4, 5, and 6, respectively. In each of these
ameasure of the error in the coarse-grid functional is plotted versus the total number of ¢
in the corresponding coarse grid. These errors are absolute errors plotted on a logaritl
scale. The functional values af¢U) ~ 2.707, 1.558, and 2.138 for the subsonic, isentropi
transonic, and shocked flow cases, respectively. A total of seven different uniformly spa
coarse grids are considered in these plots ranging from 10 to 640 cells. For each of tl
coarse grids five different fine grids are constructed correspondings@, 4, 8, 16, and
32. The fine-grid sizes, therefore, range from 20 to 20,480 cells. In the left-most plots
Figs. 4, 5, and 6, the functional error is measured with respect to the fine-grid value:
the functionaf The error, fo(I1Up) — fr(Un)|, estimated errof( L W) T Ry (1HUR)],
and the remaining error after correctigrfy (11'Un) — fa(Un) — (L W) TR(IHUW)I,

2 Solutions were obtained on each fine grid for the purposes of computing the corresponding functional er
needed for the convergence plots. It is reiterated here that the error estimation procedure, itself, does not re
solutions on the fine grids.
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FIG. 5. Error convergence plots on uniform grids for the isentropic transonic test case. In the left plot, err
are measured with respect to finer grid values of the functional. In the right plot, errors are measured with res
to the exact (analytical) value of the functiondi(U) ~ 1.558).

are plotted for each of the flow regimes considered. In the right plot of each figure, t
functional error is measured with respect to the exact, analytical value of the functior
We refer to this error as theue error, which is given by f; (Uy) — f(U)|. The estimated
true error is obtained using (11). As before, the remaining errors after correction are ¢
shown in the plots on the right.

The error in the functional exhibi® (h®) (asymptotic) convergence in the subsonic tes
case and(h?) convergence in the transonic test cases. After applying the error estimatit
correction procedure to the coarse-grid functionals we obtain a doubling in the accurac
approximatelyO(h®) convergence an®(h*) convergence in the subsonic and transonic
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FIG.6. Error convergence plots on uniform grids for the shocked test case. In the left plot, errors are measi
with respect to finer grid values of the functional. In the right plot, errors are measured with respect to the e:
(analytical) value of the functionalf(U) ~ 2.138).
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test cases, respectively. The lower order error convergence in the isentropic transonic
case is likely due to the singularity in the adjoint variables at the throat (see Fig. 3). In’
shocked case, both the adjoint singularity and primal discontinuity are likely contributc
to the lower order convergence in the functional error as compared to the subsonic ¢
It should be noted that the error estimates are relatively independent of the vatufes of
each of the test cases considered, as is evident from Figs. 4, 5, and 6.

The solutions on the coarsest of the coarse grids (10 cells) are not within the asympt
range for these problems. The corresponding error estimates, therefore, are not partict
accurate since they rely, to a certain extent, on the coarse-grid solutions being acct
enough to capture the essential features of the problem. The 20-cell coarse-grid solu
are, at best, barely within the asymptotic range; however, the corresponding error estinr
are already providing significant improvements in the accuracy of the functional. On
finest of the coarse grids (1280 cells), the errors in the functionals are being reducec
several orders of magnitude.

Pierce and Giles [19] applied their adjoint-based correction procedure to a serie:
similar quasi-1D test cases. They also achieved a doubling in the accuracy of the integr
pressure in two isentropic test cases. In a shocked test case, however, the improvems
convergence was oni9 (h?) to O(h®) after correction. The extra order of accuracy obtainec
for the shocked case in this paper is likely attributable to the discretization method and
to the error estimation procedure per se. This has not been confirmed, however.

The results presented in Figs. 4, 5, and 6 demonstrate that significantimprovements i
accuracy of the functional can be obtained in each of the test cases using the proposed
estimation/correction procedure on uniform grids. We now proceed to outline the adap
strategy and demonstrate that further improvements in the accuracy of the functional
be obtained using the error estimation procedure in conjunction with the proposed aday
algorithm.

4. GRID ADAPTATION STRATEGY

In this section we propose an adaptive strategy designed to improve the accuracy o
computable error estimate in (8). This is in contrast to other adaptive schemes that atte
to optimize the computational grid with respect to maximizing the accuracy of the be
functional directly [5]. One variant of the latter approach could be based exclusively
(8), where it is evident that the error in the functional can be expressed as a weigt
sum of the local residual errors with the adjoint variables as the weights. These Ic
error contributions could be used as indicators in a grid adaptive strategy designe
yield near-optimal grids for computing the chosen functional. Unfortunately, this approz
could lead to erroneous requests to the grid generator for refinement and/or coarse
in regions where the adjoint solution is not sufficiently resolved. We wish to reduce tt
risk by deriving more conservative criteria for adaptation based on both the primal ¢
adjoint residual errors. The proposed adaptive strategy involves equidistributing the ve
of an adaptation parameter throughout the computational domain. We will demonst
that reducing the proposed adaptation parameter leads to improvements in the quality
error estimates. In practice, it also leads to improvements in the base value of the functic
before correction. Furthermore, we will show that a fringe benefit of reducing the propo:s
adaptation parameter is that certain nonlinear contributions to the error are also reduc
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4.1. Adaptive Criteria

Let us restrict our attention to a coarse-grid problem and one fine-grid error estimate
simplify the present discussion, we omit nonlinear effects (a more thorough accounting
the error is presented in the Appendix). Equation (6) can be decomposed in the follow
manner:

(UST) — U ~ (L) TR (UF) + (Wl — LE i) Ru(UF1) . (16)

Computable correction Error in computable correction
The adjoint residual operat®! is defined by

T o T
N7 Ll . 17
ol 9nluy

Substituting the coarse-mesh adjointinto the residual operator and notitﬁg“thamUhH ) =
0 yields

dRn

.
Rﬁ(L,‘j\yH)=[M ] (Lh Wy — Whlyr). (18)

H
Uh

Using this last expression, (16) may be recast as

-1
) = i ~ () "R ) - () (]| o)

Error in computable correction

Computable correction

(19)

Another form of the error in the computable correction (ECC), which is dual to that give
in (16), can be obtained using (4) and (19). Specifically,

f(UfF) — U = (L) R (UF) + (R (LEW) ) (U= Uf) . (20)

Computable correction Error in computable correction

The proposed adaptive strategy is based on reducing the ECC, thereby improving
accuracy of the computable correction. It is evident from (16), (19), and (20) that the E
can be written in at least three different forms. According to (19), reducing the local resid
errors in both the primal and adjoint solutions simultaneously would lead to a reduction
the ECC. Adapting on both residuals seems advantageous with respect to the robus
of the procedure. In using this form, however, one must address the issue of how to decr
the two residuals simultaneously during the adaptive procedure. In general, the units of
primal and adjoint residuals will be different and their magnitudes could vary significant|
Aviable adaptive scheme must ultimately combine the two residuals into a single adapta
parameter for each cell or element in the mesh. For the purposes of adaptation, (16)
(20) provide more convenient forms of the ECC from which to work with. In particula
the ECC can be expressed as the inner product of the adjoint solution error and the pr
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residual error (16) or as the inner product of the adjoint residual error and the primal solut
error (20). Neglecting nonlinear terms, these two inner products are equal. The magnit
of their corresponding components are comparable and their units are equal to thos
the functionalf (U). This illustrates the duality between the primal and adjoint residu:
operators. If nonlinear effects are accounted for, a dualitylyapll exist between the two

inner products. By retaining nonlinear terms in (4), one can express the duality gap as

D

(Whlyp — LEwn) T Ra(UH) = {RY (L wh)} T (Un = UH)
= —(IIJh|UhH — LE\I/H)TW, (21)

whereW is a vector containing quadratic forms of the primal error. An explicit expressic
for W is given by Eq. (iii) in the Appendix. The proposed adaptive procedure is based
reducing and/or equidistributing the magnitudes of the components of each of the in
products on the right-hand side of (21). In addition to improving the quality of the con
putable correction, this will lead to a reduction in the magnitude of the duality gap a
hence to a reduction in the nonlinear contribution to the functional error.

There is still the issue of approximating the primal and adjoint solution errors in (2!
This will be addressed in the next section.

4.2. Refinement Strategy

In the proposed adaptive strategy, we seek to equidistribute the value of an adapte
parameterg, over the entire domain. In doing so, our intention is to maximize the qualil
of the computable error estimate (8), thereby improving the accuracy of the final, correc
functional. For the 1-D test cases in this paper, we attempt to achieve this by repeat
regenerating the computational grid, in an iterative manner, keeping the total number of ¢
fixed, untile takes on a uniform value throughout the domain. While complete remeshing
appropriate for 1-D problems, it may not be practical for multidimensional problems. T
proposed criteria for adaptation, however, can be applied to other modes of grid refinem

Consider the operation of computing an inner product over the finesgridmbedded
within Q4. For each coarse-grid cdd] there aren fine-grid cells over which a partial inner
product must be computed. For each fine-gridic&), within cellk, there are three subcom-
ponents to the primal and adjoint residual vectors corresponding to the mass, momen
and energy conservation equations in the quasi-1D flow model. In light of the discussiot
the previous section, Eq. (21) suggests the following definition for the adaptation param
ek at cellk:

e =3 {|[QFwn — LE W] [Ra (181U |
(k)

[ [QUn = 18U gy [RY (LE )]y} (22)

In this last expression, a term of the forl,]; k), for some generic vectat, on @y, refers

to the 3x 1 subvector (component) &f, corresponding to the fine-grid céllk) within
the coarse-grid celk. The summation in (22) is over all fine cells within thth coarse
cell. For the purposes of adaptatidrf] and Qf are interpolation operators which map
coarse-grid vectors onto the fine grid via linear and quadratic interpolation, respectiv
The reconstruction operatty’ is defined in Section 3.4.
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At each adaptive iteration, a new cell siZdy, is computed from the old oneH,
according to

HNKZKHK(E) s (23)
£k

wheres is the root mean square obver all coarse grid cellg is an underrelaxation factor
that ensures monotonic convergence to a final grid in the iterative adaptive procedure,
k is the constant which, at a particular iteration, allows the new cell sizes to add up to
domain length. In the present computations, a conservative vale-00.01 was used.

If the adaptive procedure were implemented as described above, spurious, high-frequ
modes would start to appear in the residual errors after several adaptive iterations. Eve
ally, these modes would manifest themselves as oscillations in the cell-size distributic
Several attempts were made to overcome this difficulty. The most effective remedy for ¢
trolling the oscillations was to use a small number of local least-squares smoothing swe
on the adaptation parameter at each adaptive iteration prior to computing the new cell-
distribution. The high-frequency modes were effectively annihilated at each iteration bef
they had a chance to grow. The quality of the error estimates were practically unaffectec
this procedure.

4.3. Numerical Results

A series of error convergence plots corresponding to the subsonic, isentropic transc
and shocked flow cases are presented in Figs. 7, 8, and 9, respectively. In each of t
plots, uniform and adapted-grid results are compared. Errors are measured with res
to the exact (analytical) value of the functional. Five different grid sizes are consider
10, 20, 40, 80, and 160 cells. During the adaptive runs, the total number of cells in e:
grid was kept constant. After the adaptive process was completed for each grid and
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FIG. 7. Error convergence plot on uniform and adapted grids for the subsonic test case. Two sets of adaj
results are presented, one based on equidistributing a measure of the interpolation error in the pressure a
other based on the proposed adaptive criteria. Errors are measured with respect to the exact (analytical) va
the functional f (U) ~ 2.707).



GRID ADAPTATION FOR FUNCTIONAL OUTPUTS 219

-3

-4

-5

log,(Error)

-6

-7

-8

-9

74

——&—— Error - upiform

BB LALEE LALES REEEE LRAAE LEREN ERRLE LEREE REI

Error - addapted, pressure
oo

error=uniform -\

error - adapted, pressure

Error - adapted, propose:

error - adapred, proposed
Il L Il L L L L 1

[NENR SNNNE SRNNE ENRNE SENNE FRRN ANANS ANNAS NNANE AN

1.5 2
log,(Cells)

-1

-2

FIG. 8. Error convergence plot on uniform and adapted grids for the isentropic transonic test case. Two
of adaptive results are presented, one based on equidistributing a measure of the interpolation error in the pre
and the other based on the proposed adaptive criteria. Errors are measured with respect to the exact (anal
value of the functional {(U) ~ 1.558).

case, the proposed error estimation procedure was applied on the final adapted grid yie
the corrected functional estimates plotted in the figure. Two adaptive criteria were us
the proposed criteria (see Section 4.1) and a standard indicator based on a measure
interpolation error in the computed pressure [3, 27]. In particular, the standard mett
strives to equidistribute the value gfover the entire domain, where
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FIG. 9. Error convergence plot on uniform and adapted grids for the shocked test case. Two sets of ada|
results are presented, one based on equidistributing a measure of the interpolation error in the pressure a
other based on the proposed adaptive criteria. Errors are measured with respect to the exact (analytical) va

the functional ¢ (U) ~ 2.138).
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FIG. 10. Convergence in the2?(Q4) norm of the error in the stagnation pressure. Results are presented f
uniform grids, grids obtained using the adaptive strategy based on interpolation error in the computed pres
and grids obtained using the proposed adaptive scheme. Left: subsonic flow; center: isentropic transonic
right: shocked flow.

is the product of the square of the cell sidgand the absolute value of the second derivative
of the pressure for cek. A second-order, central difference was used to approximate tt
second derivative in (24).

The results in Figs. 7, 8, and 9 show that the accuracy of the functionals on the fi
adapted grids, before correction, are consistently better than their corresponding value
uniform grids of equal size. After application of the corrections, the adaptive results ba:
on the proposed scheme become consistently more accurate than both the uniform
results and the results obtained using the standard adaptive scheme. Note that the corr
functional values obtained using the standard scheme are generally less accurate the
corresponding uniform grid results. The disappointing performance of the interpolatic
error indicator is likely due to the lack of a rigorous link between the second derivative
the pressure and the error in the computed functional [27].

Figure 10 shows the convergence in th&2y) norm of the error in the stagnation
pressure where

L
1Po = P20, E/o (Po— pb)*dx. (25)

In this last expressior, is the exact (analytical) stagnation pressure pfids the finite
volume approximation o®y. For the purposes of evaluating the integral in (28, is
assumed to vary linearly within each cell. Figure 10 is provided as an example of h
guantities other than the chosen functional converge using the proposed adaptive sche

The cell-size distributions corresponding to the final adapted grids using the propo
adaptive procedure are plotted in Fig. 11 on a logarithmic scale. For each flow regime,
evident that the cell-size distributions corresponding to the 20-, 40-, 80-, and 160-cell gt
are similar in shape; however, they become better defined, and appear to be convergii
a fixed shape, as the total number of cells are increased. In each case, a clustering of
occurs near the throat region. This is particularly true for the transonic flow cases, where
adjoint variables exhibit a singularity. In the shocked case, there is also a clustering of
near the shock. In all cases, a coarsening of the grid occurs at the ends of the nozzle w
the cross-sectional areas are constant. This effect becomes more pronounced as the
number of cells is increased. Lastly, there is a slight clustering of cells in the two regions
the nozzle where the constant-area portions of the duct join with the varying-area sect
At these two points, the second derivative of the nozzle area is discontinuous.
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FIG. 11. Converged cell-size distributions (final adapted grids) after application of the proposed adapt
strategy to each of the quasi-1D Euler test cases considered. The total number of cells was fixed during
adaptive run. Left: subsonic flow; center: isentropic transonic flow; right: shocked flow.
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Figures 12 and 13 compare distributions of the adaptation parameteuniform and
adapted grids, respectively, for each of the test cases considered. The total number of
was fixed at 160 during each adaptive run. As discussed in the previous section, the prop
adaptive algorithm strives to equidistribute the value @iver the entire domain, where
¢ is given by (22). It is evident from each of the plots in Fig. 13 thatas effectively
equidistributed at the end of each adaptive run. It is interesting to note that the shape
the distributions ot on the uniform grids are similar to the shapes of the correspondir
cell-size distributions of the final adapted grids (Fig. 11) after reflection of these cun
180 about the horizontal.

Figure 14 shows the cell-size distributions corresponding to the final adapted grids u:
the interpolation-error indicator to drive the adaptive process. In the shocked flow case,
indicator clusters cells near the shock, as expected. In contrast to the cell sizes in Fig
(obtained using the proposed adaptive procedure), the interpolation-error indicator did
cluster cells near the throat in the transonic flow cases. Furthermore, it did not cluster c
near the points of discontinuous nozzle-area curvature. Underresolving the grid in th
regions appears to have been the cause of the degraded accuracy in the predicted func
even when compared to the uniform grid results.

Figures 15 and 16 compare distributions of the adaptation paragheteuniform and
adapted grids, respectively, for each of the test cases considered.

The adaptive results presented in this section demonstrate that additional improvem
in the accuracy of the functional can be achieved by applying the proposed adaptive stra
in conjunction with the error estimation procedure outlined in Section 2. It is anticipate
however, that the full potential of grid adaptivity will not be realized until the procedure
applied to multidimensional problems.

5. CONCLUSION

In this paper, an error estimation and grid adaptive strategy, based on a discrete ad
formulation, was presented for improving the accuracy of specified integral outputs (ful
tionals) from numerical solutions of partial differential equations. There are two stages
the error estimation procedure. The first stage involves estimating the error in the fu
tional with respect to its value on a uniformly finer grid. The second stage involves
multilevel extrapolation process whereby the exact value of the functional is estimated.
main objective of the proposed adaptive procedure is to optimize the computational ¢
with respect to maximizing the quality of the aforementioned error estimation procedu
It was also shown that certain nonlinear contributions to the error can be reduced by
adaptive process. Numerical results were presented for the quasi-1D Euler equations.
isentropic and shocked flows were considered. The error estimation procedure, applie
uniformly spaced grids, approximately doubled the accuracy of the computed function
Further improvements in accuracy were realized when the error estimation/correction |
cedure was applied in conjunction with the proposed adaptive strategy. A standard ada
method, driven by a measure of the interpolation error in the computed pressure, was im
mented and results were compared with those obtained from the proposed adaptive stre
Adapting based on the interpolation error consistently yielded less accurate results. Th
attributed to the lack of a rigorous link between the second derivative in the pressure
the error in the computed functional [27].
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Finally, we note that grid adaptation for one-dimensional problems is seldom used
practice. It was employed in this paper to demonstrate the error estimation/grid adap
concept in a relatively simple manner. It is expected that the adaptive strategy will pl
a far more important role in multidimensional problems. This is where the full potenti
of an adjoint-based adaptive strategy can be realized. In particular, if the problems ur
consideration involve multiple scales and isolated flow features such as shocks, wa
and/or boundary layers, it is not always clear which parts of the computational grid sho
be refined to enhance the accuracy of the functional while maintaining computational
ficiency. The main benefit of a well-resolved adjoint solution is that it will quantify the
extent to which residual errors in the primal variables, at specific locations in the dome
affect the cumulative error in the functional. In theory, this will be the case regardless of |
complexity or dimensionality of the flow problem under consideration. In practice, hov
ever, there are still several issues that need to be addressed upon extension of the pro
procedure to multiple dimensions. Among these issues are the difficulties associated
multidimensional interpolation and the definition of appropriate reconstruction operatc
especially on unstructured grids. There is also the whole topic of anisotropic grid aday
tion, which is particularly important for viscous flow computations. For such problems, tl
adaptive criteria will need to incorporate directional information to account for dramat
changes in length scales and in the types of transport phenomena (advection versus
sion) occurring in various portions of the domain. Initial efforts to apply the procedure
2-D inviscid and viscous transonic flows are currently underway [26].

APPENDIX

A.1. Error Analysis

In this section, we consider nonlinear contributions to the error in the functional estim:
given by (6). We also revisit some of the developments of Section 4.1 and derive an exp
expression for the duality gap.

The exact, truncated, second-order, Taylor series expansify(\df) about the coarse
mesh solution can be written as

afh

1
fn(Un) = fa(Up') + FIoN o (Un—Up") + E(Uh - Uy

192 fh H .
th Ug(Uh -Up), @)
whereh < § < H.Inthis expressiongp f,/dU?] lug is the Hessian matrix of second deriva-
tives evaluated dt)’. The vectorU; represents the mapping on@, of the solutionUs,
corresponding to a medk;, which is embedded withif , with average element (or cell)
sizes.
Similarly, the residual operatd®, (Uy) can be expanded as

0 .
Ra(Un) = Ry (UH) + % (Un—UH) +w, (ii)
h UA—'

3 Note that a mesh characterizeddgsind embedded withi®, can only be associated with a rational value of
8/h. In general, the value &/ h in (i) will be nonrational. Strictly, the results of this section do not require that
§ be associated with a physical mesh and hence take on discrete values. hsteauld be regarded here as a
continuous variable.
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where

T 0%(Rp)j
JUF vy

1
W)j = E(Uh - U

(Un— U, (i)
for each componerit of the vectoWW. The term {)Z(Rh) /U2 |U5’ represents the Hessian
of the jth component of the residual vector, evaluatew,ét Furthermoreh < <H,
andU;' is defined in the same mannerld$was above.

From (ii), one can symbolically obtain the solution error as

Un -0 = 2R Ry ug) + W) ™)

Using (i), (iv), and the definition of the fine-mesh adjoint given by (7), we arrive at th
following expression for the error in the computable correction:

(ULT) — U = (LEW) T R(UF) + (Wil — Lf i) Ry (UF)

Computable correction Error neglecting nonlinear effects
2
T 1 HyT 0% fh H
+ W[y W —S(Un—U ) —=| (Un—Up'). ()
h 2 3Uh U}f

Error due to nonlinear effects

Finally, transposing (18), right-multiplying the result byRn/dUn|yr] " Ra(U{), and
using (iv) leads to

-1
ad
(o~ L) o) =" 5] | o)
uy!
oR,| |
:Rf\]I/(LEl\I/H)T (Uh_UhH)+ 8Uhu':4] W‘|

=RY (L,';'\DH)T(Uh — U#) — (\IJh|UhH - L#\IJH)TW’ (vi)
from which the duality ga is obtained as

D = (Wl — Lf W) Ru(UL) = {RY (LE W)} (Un - UD)

T ..
= —(Wnlyn — Li'wy) W. (vii)
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