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An error estimation and grid adaptive strategy is presented for estimating and re-
ducing simulation errors in functional outputs of partial differential equations. The
procedure is based on an adjoint formulation in which the estimated error in the
functional can be directly related to the local residual errors of both the primal and
adjoint solutions. This relationship allows local error contributions to be used as
indicators in a grid-adaptive strategy designed to produce specially tuned grids for
accurately estimating the chosen functional. In this paper, attention is limited to
one-dimensional problems, although the procedure is readily extendable to multiple
dimensions. The error estimation procedure is applied to a standard, second-order,
finite volume discretization of the quasi-one-dimensional Euler equations. Both isen-
tropic and shocked flows are considered. The chosen functional of interest is the in-
tegrated pressure along a variable-area duct. The error estimation procedure, applied
on uniform grids, provides superconvergent values of the corrected functional. Re-
sults demonstrate that additional improvements in the accuracy of the functional can
be achieved by applying the proposed adaptive strategy to an initially uniform grid.
The proposed adaptive strategy is also compared with a standard adaptive scheme
based on the interpolation error in the computed pressure. The proposed scheme
consistently yields more accurate functional predictions than does the standard
scheme. c© 2000 Academic Press
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1. INTRODUCTION

The use of computational simulations in the prediction of complex aerodynamic flows
is becoming increasingly prevalent in the design process within the aerospace industry.
Continuing advancements in both computing technology and algorithmic development are
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ultimately leading to attempts at simulating ever-larger, more complex problems. The effi-
ciency of the underlying computational algorithms is critical and is often the limiting factor
in the applicability of computational fluid dynamics as a viable analysis tool in design.
Among the difficulties associated with increased problem complexity are the large number
of degrees of freedom required to accurately predict the flow field.

A well-known strategy for minimizing the required mesh size for a given level of accuracy
is grid adaptation [3, 5, 10, 16, 18, 26–29]. The basic premise is to locally enrich the grid
in regions which most adversely affect the accuracy of the final solution while coarsening
the grid in more benign regions to prevent incurring unnecessary computational costs. A
major difficulty in achieving definite improvements using adaptation for Euler and Navier–
Stokes calculations is the lack of a reliable error indicator. A common strategy is to adapt
to certain physical features of the flow, such as shock waves, slip lines, or stagnation
points, by employing indicators based on large flow gradients [3, 27]. This approach is
quite straightforward to implement since the indicators can be computed directly from the
evolving flow field, which is readily available. However, continuous local refinement of the
dominant flow features does not necessarily guarantee that certain measures of the global
error will simultaneously be reduced. In certain cases this procedure may even lead to
incorrect results [27]. Another strategy is to develop adaptive criteria based ona posteriori
error estimates [1, 4, 5, 8, 10, 13, 14, 17, 19, 26, 28–30]. A common approach [10, 28,
29] has been to use local gradient recovery techniques to obtain higher order projections
of the solution gradients. The solution is then compared with the higher order projection
to assess the error. For elliptic problems and, in particular, finite element methods, this
procedure provides rigorous error estimates based on particular norms of the solution and its
derivatives. Unfortunately, for convection-dominated problems, such as those encountered
in aerodynamic applications, these error estimates can no longer be made rigorous. In
addition, even within the setting of finite-element-discretized, elliptic problems, one can
argue that a global error norm based directly on the solution and its derivatives may not be
optimal within an engineering context.

An alternate approach to making error estimation more relevant to engineering applica-
tions is to assess the error made in predicting an integral quantity representing an engineering
output. For example, in aerodynamic applications, this output might be the lift or drag. To
this end, procedures have been outlined by Rannacher and collaborators [4, 5, 13], Pierce
and Giles [19], Machielset al. [14], and Venditti and Darmofal [26]. They are based on
concepts already known from structural finite element methods [2]. These procedures in-
voke the concept of duality, in which an equivalent dual (adjoint) formulation of the primal
problem is exploited. The primary benefit of invoking the dual problem, in the context of
error estimation, is that the error in a chosen functional can be directly related to local
residual errors of the primal solution through the adjoint variables. More precisely, the error
can be expressed as an inner product of the local residual errors and the adjoint variables.
This property elucidates the potential for devising optimal grid adaptive strategies designed
to produce specially tuned grids for maximizing the accuracy of a particular functional.

There are two common approaches to formulating the dual problem: thecontinuous
approach and thediscreteapproach. In the continuous approach an objective function is
formed by augmenting the functional of interest with Lagrange multipliers (adjoint vari-
ables) to enforce the flow constraints (the original primal, nonlinear, partial differential
equations). The next step is to consider linear perturbations to the primal flow variables and
to require that the objective function remains stationary with respect to these perturbations.
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The analytical adjoint equations are forthwith obtained, together with appropriate boundary
conditions, and are then discretized directly. One benefit to the continuous approach is that
it more readily offers insight into the nature of the adjoint solution [9]. In the discrete ap-
proach one begins with the nonlinear, discrete residual equations associated with the primal
problem and then considers linear perturbations to these. The resulting linear system of
equations also yields a consistent approximation of the adjoint solution. A convenience as-
sociated with the discrete approach is that the adjoint equations and corresponding boundary
conditions need not be derived and discretized explicitly. All that is needed are the linear
sensitivities of the functional and the Jacobian matrix associated with the primal residual.
The adjoint boundary conditions are automatically incorporated into the formulation via the
primal residual operator. Many existing Euler and Navier–Stokes codes (especially those
that employ adjoint-based optimization algorithms [6, 12, 15]) already have much of the
machinery that would be required to implement an adjoint error estimation/grid adaptation
procedure such as the one described in this paper.

The main contributions of this paper are summarized in the following. A new method-
ology is presented which uses the discrete adjoint solution to relate local errors in the
flow solution to the global error in the functional of interest. The method of Pierce and
Giles [19] also uses the adjoint solution for this purpose; however, their approach uses an
analytic viewpoint whereas the current formulation is cast in a discrete framework. The
two approaches are closely related under certain conditions that will be elaborated upon in
Section 2. A convenience associated with the current approach is that the error contribution
from the domain boundary is automatically incorporated into the expression for the com-
putable error estimate. In the method of Pierce and Giles, additional error terms may be
required to account for inhomogeneous boundary conditions [19]. There are also advantages
and disadvantages associated with the ease of implementation of the two approaches. This
will also be addressed in Section 2. Both the current approach and the method of Pierce
and Giles have the advantage of being applicable to general discretizations, whereas other
procedures are implicitly linked to a particular discretization such as the finite element
method [4, 5, 13, 14, 17]. Another contribution presented in this paper is the use of adjoint
error analysis to derive criteria for driving a grid-adaptive process. Our intention is to fur-
ther improve the accuracy of the predicted functional by coupling the aforementioned error
estimation procedure with an adjoint-based grid-adaptive strategy. The adaptive strategy
incorporates the novel use of aduality gap, which, among other things, quantifies certain
nonlinear contributions to the global error in the functional.

The organization of the paper is as follows: First, the proposed error estimation procedure
is outlined. In the first stage of the procedure, we strive to estimate the value of a functional on
a fine grid without actually solving on this grid. The only auxiliary computations required to
calculate this estimate are functional and residual evaluations on the fine grid and the solution
of a linear adjoint problem on a coarse grid. The second stage of the estimation procedure
involves estimating the exact value of the functional using multiple fine-grid estimates in a
multilevel extrapolation process. The error estimation procedure is tested on a finite volume
discretization of the quasi-one-dimensional Euler equations on uniform grids. Results are
presented for three test cases: subsonic flow, isentropic transonic flow, and shocked transonic
flow through a converging–diverging duct. The functional of interest in each case is the
integrated pressure along the duct. Next, we proceed to outline the adaptive methodology.
The primary objective of the proposed adaptive strategy is to improve the accuracy of
the aforementioned error estimation procedure to obtain a more accurate functional after
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correction. This is in contrast to other adaptive strategies that are designed to improve the
accuracy of the computed functional directly. Robustness of the iterative adaptive procedure
is also of concern in our choice of adaptive criteria. Finally, one-dimensional adaptive results
are presented and demonstrate that further improvements in the overall accuracy of the
computed functional can be achieved using the proposed adaptive strategy in conjunction
with the error estimation procedure. The proposed adaptive strategy is also compared with
a standard adaptive scheme driven by a measure of the interpolation error in the computed
pressure [3, 27]. Adaptive results using the proposed scheme are consistently more accurate
than those of the standard scheme.

2. ERROR ESTIMATION PROCEDURE

Consider the coarse meshÄH as being an affordable mesh with respect to available com-
puting resources and allowable solution times. The parameterH represents a characteristic
length associated with the discretization such as the cell spacing in a finite volume scheme
or the average element size in a finite element scheme. We are interested in estimating an
integral quantityf (U ), whereU is the solution of the system of partial differential equations
(PDEs) under consideration. The approximation of this integral onÄH using a prescribed
quadrature rule is denoted byfH (UH ), whereUH is the corresponding discrete solution
onÄH .

Although fH (UH ) can be computed affordably, it may not be sufficiently accurate for the
intended application. Now consider a fine meshÄh as being a mesh that is too expensive for
the purposes of estimatingf (U ); however, if a discrete solutionUh were obtained onÄh,
the corresponding discrete integralfh(Uh) would be sufficiently accurate for our purposes.
We further require thatÄh be embedded withinÄH . In other words,Äh is constructed,
locally, by subdividing each of the elements ofÄH into an integer numbern of self-similar1

subelements, wheren = (H/h)d andd is the number of spatial dimensions in the problem.
Our goal is to obtain an accurate estimate offh(Uh)without ever solving on the fine mesh

Äh. The point of departure in this analysis is a multiple variable Taylor series expansion of
fh(Uh) about the coarse mesh solution,

fh(Uh) = fh
(
U H

h

)+ ∂ fh

∂Uh

∣∣∣∣
U H

h

(
Uh −U H

h

)+ · · · . (1)

The column vectorU H
h represents the coarse mesh solution mapped onto the fine meshÄh

via some prolongation operator. The row vector∂ fh/∂Uh|U H
h

contains the linear sensitivities
of the fine-mesh functional evaluated usingU H

h . Introducing the prolongation operatorI H
h ,

we can write the vectorU H
h as

U H
h ≡ I H

h UH . (2)

The prolongation operatorI H
h interpolates or reconstructs the coarse-mesh solution and

maps it onto the fine mesh. The order of the prolongation should be greater than, or at
least consistent with, the order of the discretization. An appropriate definition forI H

h could

1 The requirement of self-similarity of sub-elements will need to be relaxed for certain types of grids as will be
discussed below.
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depend on the underlying discretization method and on the classification (elliptic or hyper-
bolic) of the PDE(s) being approximated. In the case of a finite difference discretization,
I H
h could represent higher order interpolation through the computed nodal values of the

coarse-mesh solution. In the case of a finite element discretizationI H
h could represent in-

jection from the coarse-mesh basis functions directly or from a higher order projection of
the finite element solution [19]. If the PDEs have a hyperbolic character to them, isodirec-
tional interpolation might lead to oscillatory behavior in an iterative adaptive procedure, as
was initially encountered in the current implementation of the proposed adaptive strategy.
Alternative reconstruction approaches may be required to overcome this difficulty. This is
discussed further in Section 4.2.

The nonlinear residual operator representing the system of equations arising from some
discretization of the original partial differential equations on the fine mesh is denoted by

Rh(Uh) = 0. (3)

Linearizing about the coarse-mesh solution yields

Rh(Uh) = Rh
(
U H

h

)+ ∂Rh

∂Uh

∣∣∣∣
U H

h

(
Uh −U H

h

)+ · · · , (4)

where∂Rh/∂Uh|U H
h

is the Jacobian of the fine-mesh system of equations evaluated using

U H
h . Symbolically, we can invert (4) to obtain an approximation of the error vector (that is,

the coarse-mesh-solution error measured with respect to the fine-mesh solution)

(
Uh −U H

h

) ≈ −[∂Rh

∂Uh

∣∣∣∣
U H

h

]−1

Rh
(
U H

h

)
. (5)

Substituting (5) into (1) gives

fh(Uh) ≈ fh
(
U H

h

)− (9h|U H
h

)T
Rh
(
U H

h

)
, (6)

where9h|U H
h

is the discrete adjoint solution satisfying[
∂Rh

∂Uh

∣∣∣∣
U H

h

]T

9h|U H
h
=
(
∂ fh

∂Uh

∣∣∣∣
U H

h

)T

. (7)

Equation (6) is an estimate offh(Uh). It is exact for linear residuals and functionals. To
compute this estimate would require the solution of the adjoint problem on the fine mesh,
which is undesirable. Instead,9h|U H

h
is replaced by the interpolated coarse-mesh adjoint

L H
h 9H , whereL H

h is a prolongation operator which expresses the coarse-mesh adjoint on
the fine mesh by interpolation. UtilizingL H

h , and the reconstruction operatorI H
h , in (6)

yields the final, computable estimate as

f̃ h(UH ) = fh
(
I H
h UH

)− (L H
h 9H

)T
Rh
(
I H
h UH

)
, (8)

where9H is obtained from the solution of the discrete adjoint equations on the coarse grid:[
∂RH

∂UH

]T

9H =
(
∂ fH

∂UH

)T

. (9)
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The coarse gridÄH should be fine enough to capture the essential features of the problem
under consideration (that is, the corresponding discrete solutionUH should be within the
asymptotic range) in order for the truncated expansions, (1) and (4), to be uniformly valid.
In practice, however, decent error estimates have been obtained on fairly coarse grids, as
will be demonstrated in Section 3.4 when the numerical results are presented.

We now describe a method of estimating the exact value of the functionalf (U ). This is
achieved by utilizing two or more fine meshes in a multilevel error estimation procedure
similar to Richardson extrapolation [20]. A key distinction from Richardson extrapolation is
that the current approach extrapolates error estimates as opposed to extrapolating discrete
solutions computed on grids of different spacing. Thus, only one coarse grid solution is
required to apply this procedure. Furthermore, it is not restricted to uniform base-grids.
Strictly, one could interpret the current procedure as a particular application of Richardson’s
deferred approach to the limit [21].

Let p be the observed rate of convergence of the error in the coarse-grid functional. We
define a series of fine meshesÄhi , i = 1, 2, . . . ,m, such that the corresponding character-
istic cell or element sizes satisfyhi > hi+1. Furthermore, thei th meshÄhi is constructed
by subdividing each of the elements ofÄH into an integer numberni of self-similar subele-
ments, whereni = (H/hi )

d. The discrete functional on thei th fine mesh can be estimated
using (8). This estimate is denoted here byf̃ hi . The multilevel procedure is based on the
observation that the true error in the estimated functional,f̃ hi − f (U ), computed from a
smooth base solution, converges likehp

i . This may also be true for certain integral quantities
computed from discontinuous base-solutions including shocked flows [7]. Considering two
different fine meshes,i = 1 andi = 2, we may, therefore, write

f̃ h1 − f (U ) = chp
1 + O

(
hp+1

1

)
,

(10)
f̃ h2 − f (U ) = chp

2 + O
(
hp+1

2

)
.

Neglecting the higher order terms, eliminatingc, and solving forf (U ) yields theO(hp+1)

estimate as

f (U ) ≈ f̃ h1h
p
2 − f̃ h2h

p
1

hp
2 − hp

1

. (11)

Convergence rates even better thanO(hp+1)have been observed for the test cases considered
in this paper using the current estimation scheme.

It should be noted that constructing a hierarchy of fine grids in the manner suggested
above may not be possible for certain types of grids. For example, one cannot subdivide a
tetrahedron into self-similar tetrahedra. In such cases, the condition of self-similarity of the
subelements would have to be relaxed. One alternative approach, in the case of a tetrahedral
base-mesh, would be to first choose a systematic method of discretizing a single, arbitrary
tetrahedron into subtetrahedra. For example, a 1 : 12 refinement ratio could be achieved by
adding nodes to the midpoints of each of the edges of the original tetrahedron and by adding
one more node to its centroid. The application of this systematic refinement algorithm to
each tetrahedron in the base-mesh would thereby define an embedded fine mesh. Recursive
repetition of this procedure would result in a hierarchy of grids where each successive grid
would be embedded within the previous one.

We now briefly mention some differences between the proposed error estimation pro-
cedure and the adjoint-based correction method of Pierce and Giles [19]. The current
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formulation is cast in a discrete framework whereas their approach uses an analytic view-
point. The two methods become closely related as the fine gridÄh in the current procedure
becomes infinitely resolved (that is, ash→ 0). A convenience associated with the current
approach is that the error contribution from the domain boundary is automatically accounted
for in the error estimate given by (8). This is due to the fact that the boundary conditions
are already incorporated into the residual operator in the current formulation. In the method
of Pierce and Giles, additional error terms may be required to account for inhomogeneous
boundary conditions [19]. With regard to the quality of the resulting error estimates, both
approaches appear to give similar accuracy; however, additional work would be required to
verify this.

Finally, we address the issue of implementing the proposed procedure into an existing flow
solver. Depending on the structure of the source code, it could be possible to implement the
current procedure very rapidly into a flow solver that already computes the adjoint solution
(such as an adjoint-based, aerodynamic optimization code [6, 12, 15]), especially if the
residual and functional operators are readily available. However, a naive implementation of
the procedure would entail storing at least one embedded fine grid in its entirety in order
to avoid modifying the machinery of the code. This could become prohibitive in multiple
dimensions. A memory-efficient implementation would necessitate more coding work to
avoid storing an entire fine grid in memory. Thus the advantage of an easy implementation
would be lost unless memory were not an issue.

3. UNIFORM GRID RESULTS

The error estimation strategy outlined in the previous section is tested on the quasi-1D
Euler equations using a standard second-order finite volume scheme on uniformly spaced
grids.

3.1. Quasi-1D Euler Equations

The quasi-1D Euler equations describe the flow of an inviscid, compressible, ideal gas
through thin variable-area ducts [11, 23]. The steady-state equations may be written in the
form

d F(U )

dx
= J(U ), (12)

whereU , F , andJ are given by

U =


ρA

ρV A

ρE A

 , F =


ρV A

(ρV2+ p)A

ρVh̄oA

 , J =


0

p(d A/dx)

0

 . (13)

In these expressions,ρ is the mass density,V is the gas velocity,p is the static pressure,E
is the total energy,̄ho = E + p/ρ is the stagnation enthalpy, andA(x) is the cross-sectional
area of the duct. The system is closed with the equation of state for an ideal gas:

p = ρ(γ − 1)

(
E − V2

2

)
, (14)
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FIG. 1. Nozzle geometry and computed Mach number distributions for the quasi-1D Euler test cases
considered.

whereγ is the ratio of specific heats. Three different test cases are considered: subsonic
flow, isentropic transonic flow, and shocked transonic flow through a converging–diverging
nozzle. These flows are depicted in Fig. 1 in terms of the Mach numberM , whereM ≡ V/c
andc = √γ p/ρ is the local speed of sound. The nozzle geometry, also shown in Fig. 1, is
symmetric about the throat location, with a length ofL = 3 and a throat-to-exit area ratio
of 1 : 2.

3.2. Finite Volume Scheme

Solutions are obtained using a Newton–Raphson iterative technique applied to a cell-
centered finite volume scheme. Numerical fluxes are evaluated using Roe’s approximate
Riemann solver [22]. Second-order accuracy is achieved using variable extrapolation [25]
in conjunction with the van Albada limiter [24].

3.3. Functional of Interest

The functional of interest is chosen to be the integral of the pressurep over the domain:

f (U ) =
∫ L

0
p dx. (15)

This functional serves as an analogue for the lift in airfoil or aircraft computations [19].
The pressure distributions for each of the flow regimes considered are plotted in
Fig. 2. The discrete functional on all grids is computed using the two-point Newton–Cˆotes
quadrature (Trapezoidal Rule integration). The computed adjoint variables corresponding
to the chosen functional are plotted in Fig. 3. There are three adjoint variables,91, 92,
and93, corresponding to the three conservation equations defined in (12) and (13). It is
interesting to note that a logarithmic singularity exists in the adjoint variables at the sonic
throat for both the isentropic transonic and shocked flow cases. Their presence reflects the
fact that the value of the integrated pressure is infinitely sensitive to a linear perturbation
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FIG. 2. Computed pressure distributions along the nozzle for each of the quasi-1D Euler test cases considered.
Left: subsonic flow; center: isentropic transonic flow; right: shocked flow.

in the flow variables at the choked throat. These singularities were observed by Giles and
Pierce [9] in an analytical investigation of the properties of the continuous adjoint equa-
tions. Fortunately, the singularities have not resulted in a degradation of the error estimates,
as will be demonstrated below. It is also interesting to note that the adjoint variables are
continuous across the shock and have zero gradient there [9].

3.4. Numerical Results

The error estimation procedure requires that an appropriate reconstruction operatorI H
h be

defined to compute (8). The reconstruction operator must accurately represent the coarse-
grid solution at the embedded fine-grid cell centers. To achieve this, the coarse-grid solution
is assumed to vary over each coarse-grid cell in accordance with the variable extrapolation
and limiting procedure used in the finite volume scheme. The coarse-grid solution at the
center of an embedded fine-grid cell is obtained by direct injection from this limited, higher
order reconstruction over the associated coarse-grid cell. While this method of reconstruc-
tion works well for the error estimation procedure, it results in oscillatory behavior in the
iterative adaptive procedure to be outlined in the next section. Alternative reconstructions
which take into account the hyperbolic character of the flow equations were implemented
and led to reductions in the oscillations; however, they came at the cost of reductions in the
accuracy of the error estimates, in general. To maintain the quality of the error estimates, we
chose, instead, to control the oscillations using a local least squares smoothing technique

FIG. 3. Computed adjoint flow solutions corresponding to the integrated pressure along the nozzle for each
of the quasi-1D Euler test cases considered. Left: subsonic flow; center: isentropic transonic flow; right: shocked
flow.
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FIG. 4. Error convergence plots on uniform grids for the subsonic test case. In the left plot, errors are measured
with respect to finer grid values of the functional. In the right plot, errors are measured with respect to the exact
(analytical) value of the functional (f (U ) ≈ 2.707).

and to retain the aforementioned limited, higher order reconstruction as the definition of
I H
h for all the test cases in this paper.

The prolongation operatorL H
h , used to express the coarse-grid adjoint onto the fine grid,

was chosen as quadratic interpolation through adjacent coarse-grid cell centers. Linear
interpolation also yields the same asymptotic convergence rates as quadratic interpolation
with only a slight degradation in the quality of the corresponding error estimates. The
choice of quadratic interpolation over linear interpolation was, therefore, quite arbitrary
for the quasi-1D test cases and functional considered in this paper. It should be noted,
however, that for multidimensional problems and/or problems involving boundary-integral
functionals, the order of the prolongation operator should be greater than the order of
the corresponding discretization to ensure that the superconvergent property of the error
estimates is preserved [26].

A series of error convergence plots corresponding to the subsonic, isentropic transonic,
and shocked flow cases are presented in Figs. 4, 5, and 6, respectively. In each of these plots
a measure of the error in the coarse-grid functional is plotted versus the total number of cells
in the corresponding coarse grid. These errors are absolute errors plotted on a logarithmic
scale. The functional values aref (U ) ≈ 2.707, 1.558, and 2.138 for the subsonic, isentropic
transonic, and shocked flow cases, respectively. A total of seven different uniformly spaced
coarse grids are considered in these plots ranging from 10 to 640 cells. For each of these
coarse grids five different fine grids are constructed corresponding ton = 2, 4, 8, 16, and
32. The fine-grid sizes, therefore, range from 20 to 20,480 cells. In the left-most plots of
Figs. 4, 5, and 6, the functional error is measured with respect to the fine-grid values of
the functional.2 The error,| fh(I H

h UH )− fh(Uh)|, estimated error,|(L H
h 9H )

T Rh(I H
h UH )|,

and the remaining error after correction,| fh(I H
h UH )− fh(Uh)− (L H

h 9H )
T Rh(I H

h UH )|,

2 Solutions were obtained on each fine grid for the purposes of computing the corresponding functional errors
needed for the convergence plots. It is reiterated here that the error estimation procedure, itself, does not require
solutions on the fine grids.
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FIG. 5. Error convergence plots on uniform grids for the isentropic transonic test case. In the left plot, errors
are measured with respect to finer grid values of the functional. In the right plot, errors are measured with respect
to the exact (analytical) value of the functional (f (U ) ≈ 1.558).

are plotted for each of the flow regimes considered. In the right plot of each figure, the
functional error is measured with respect to the exact, analytical value of the functional.
We refer to this error as thetrue error, which is given by| fH (UH )− f (U )|. The estimated
true error is obtained using (11). As before, the remaining errors after correction are also
shown in the plots on the right.

The error in the functional exhibitsO(h3) (asymptotic) convergence in the subsonic test
case andO(h2) convergence in the transonic test cases. After applying the error estimation/
correction procedure to the coarse-grid functionals we obtain a doubling in the accuracy to
approximatelyO(h6) convergence andO(h4) convergence in the subsonic and transonic

FIG. 6. Error convergence plots on uniform grids for the shocked test case. In the left plot, errors are measured
with respect to finer grid values of the functional. In the right plot, errors are measured with respect to the exact
(analytical) value of the functional (f (U ) ≈ 2.138).
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test cases, respectively. The lower order error convergence in the isentropic transonic test
case is likely due to the singularity in the adjoint variables at the throat (see Fig. 3). In the
shocked case, both the adjoint singularity and primal discontinuity are likely contributors
to the lower order convergence in the functional error as compared to the subsonic case.
It should be noted that the error estimates are relatively independent of the values ofn for
each of the test cases considered, as is evident from Figs. 4, 5, and 6.

The solutions on the coarsest of the coarse grids (10 cells) are not within the asymptotic
range for these problems. The corresponding error estimates, therefore, are not particularly
accurate since they rely, to a certain extent, on the coarse-grid solutions being accurate
enough to capture the essential features of the problem. The 20-cell coarse-grid solutions
are, at best, barely within the asymptotic range; however, the corresponding error estimates
are already providing significant improvements in the accuracy of the functional. On the
finest of the coarse grids (1280 cells), the errors in the functionals are being reduced by
several orders of magnitude.

Pierce and Giles [19] applied their adjoint-based correction procedure to a series of
similar quasi-1D test cases. They also achieved a doubling in the accuracy of the integrated
pressure in two isentropic test cases. In a shocked test case, however, the improvement in
convergence was onlyO(h2) to O(h3) after correction. The extra order of accuracy obtained
for the shocked case in this paper is likely attributable to the discretization method and not
to the error estimation procedure per se. This has not been confirmed, however.

The results presented in Figs. 4, 5, and 6 demonstrate that significant improvements in the
accuracy of the functional can be obtained in each of the test cases using the proposed error
estimation/correction procedure on uniform grids. We now proceed to outline the adaptive
strategy and demonstrate that further improvements in the accuracy of the functional can
be obtained using the error estimation procedure in conjunction with the proposed adaptive
algorithm.

4. GRID ADAPTATION STRATEGY

In this section we propose an adaptive strategy designed to improve the accuracy of the
computable error estimate in (8). This is in contrast to other adaptive schemes that attempt
to optimize the computational grid with respect to maximizing the accuracy of the base
functional directly [5]. One variant of the latter approach could be based exclusively on
(8), where it is evident that the error in the functional can be expressed as a weighted
sum of the local residual errors with the adjoint variables as the weights. These local
error contributions could be used as indicators in a grid adaptive strategy designed to
yield near-optimal grids for computing the chosen functional. Unfortunately, this approach
could lead to erroneous requests to the grid generator for refinement and/or coarsening
in regions where the adjoint solution is not sufficiently resolved. We wish to reduce this
risk by deriving more conservative criteria for adaptation based on both the primal and
adjoint residual errors. The proposed adaptive strategy involves equidistributing the value
of an adaptation parameter throughout the computational domain. We will demonstrate
that reducing the proposed adaptation parameter leads to improvements in the quality of the
error estimates. In practice, it also leads to improvements in the base value of the functional,
before correction. Furthermore, we will show that a fringe benefit of reducing the proposed
adaptation parameter is that certain nonlinear contributions to the error are also reduced.
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4.1. Adaptive Criteria

Let us restrict our attention to a coarse-grid problem and one fine-grid error estimate. To
simplify the present discussion, we omit nonlinear effects (a more thorough accounting of
the error is presented in the Appendix). Equation (6) can be decomposed in the following
manner:

fh
(
U H

h

)− fh(Uh) ≈
(
L H

h 9H
)T

Rh
(
U H

h

)︸ ︷︷ ︸
Computable correction

+ (9h|U H
h
− L H

h 9H
)T

Rh
(
U H

h

)︸ ︷︷ ︸
Error in computable correction

. (16)

The adjoint residual operatorR9h is defined by

R9h (9) ≡
[
∂Rh

∂Uh

∣∣∣∣
U H

h

]T

9 −
(
∂ fh

∂Uh

∣∣∣∣
U H

h

)T

. (17)

Substituting the coarse-mesh adjoint into the residual operator and noting thatR9h (9h|U H
h
) =

0 yields

R9h
(
L H

h 9H
) = [∂Rh

∂Uh
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U H

h

]T (
L H

h 9H −9h|U H
h

)
. (18)

Using this last expression, (16) may be recast as

fh
(
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h

)− fh(Uh) ≈
(
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h 9H
)T
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(
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h
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Computable correction

−{R9h
(
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(
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h
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Error in computable correction

.

(19)

Another form of the error in the computable correction (ECC), which is dual to that given
in (16), can be obtained using (4) and (19). Specifically,

fh
(
U H

h

)− fh(Uh) ≈
(
L H

h 9H
)T

Rh
(
U H

h

)︸ ︷︷ ︸
Computable correction

+{R9h
(
L H

h 9H
)}T(

Uh −U H
h

)︸ ︷︷ ︸
Error in computable correction

. (20)

The proposed adaptive strategy is based on reducing the ECC, thereby improving the
accuracy of the computable correction. It is evident from (16), (19), and (20) that the ECC
can be written in at least three different forms. According to (19), reducing the local residual
errors in both the primal and adjoint solutions simultaneously would lead to a reduction in
the ECC. Adapting on both residuals seems advantageous with respect to the robustness
of the procedure. In using this form, however, one must address the issue of how to decrease
the two residuals simultaneously during the adaptive procedure. In general, the units of the
primal and adjoint residuals will be different and their magnitudes could vary significantly.
A viable adaptive scheme must ultimately combine the two residuals into a single adaptation
parameter for each cell or element in the mesh. For the purposes of adaptation, (16) and
(20) provide more convenient forms of the ECC from which to work with. In particular,
the ECC can be expressed as the inner product of the adjoint solution error and the primal
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residual error (16) or as the inner product of the adjoint residual error and the primal solution
error (20). Neglecting nonlinear terms, these two inner products are equal. The magnitudes
of their corresponding components are comparable and their units are equal to those of
the functional f (U ). This illustrates the duality between the primal and adjoint residual
operators. If nonlinear effects are accounted for, a duality gapD will exist between the two
inner products. By retaining nonlinear terms in (4), one can express the duality gap as

D ≡ (9h|U H
h
− L H

h 9H
)T

Rh
(
U H

h

)− {R9h
(
L H

h 9H
)}T(

Uh −U H
h

)
= −(9h|U H

h
− L H

h 9H
)T

W, (21)

whereW is a vector containing quadratic forms of the primal error. An explicit expression
for W is given by Eq. (iii) in the Appendix. The proposed adaptive procedure is based on
reducing and/or equidistributing the magnitudes of the components of each of the inner
products on the right-hand side of (21). In addition to improving the quality of the com-
putable correction, this will lead to a reduction in the magnitude of the duality gap and
hence to a reduction in the nonlinear contribution to the functional error.

There is still the issue of approximating the primal and adjoint solution errors in (21).
This will be addressed in the next section.

4.2. Refinement Strategy

In the proposed adaptive strategy, we seek to equidistribute the value of an adaptation
parameter,ε, over the entire domain. In doing so, our intention is to maximize the quality
of the computable error estimate (8), thereby improving the accuracy of the final, corrected
functional. For the 1-D test cases in this paper, we attempt to achieve this by repeatedly
regenerating the computational grid, in an iterative manner, keeping the total number of cells
fixed, untilε takes on a uniform value throughout the domain. While complete remeshing is
appropriate for 1-D problems, it may not be practical for multidimensional problems. The
proposed criteria for adaptation, however, can be applied to other modes of grid refinement.

Consider the operation of computing an inner product over the fine gridÄh embedded
withinÄH . For each coarse-grid cellk, there aren fine-grid cells over which a partial inner
product must be computed. For each fine-grid celll (k), within cellk, there are three subcom-
ponents to the primal and adjoint residual vectors corresponding to the mass, momentum,
and energy conservation equations in the quasi-1D flow model. In light of the discussion of
the previous section, Eq. (21) suggests the following definition for the adaptation parameter
εk at cellk:

εk =
∑
l (k)

{∣∣[QH
h 9H − L H

h 9H
]T

l (k)

[
Rh
(
I H
h UH

)]
l (k)

∣∣
+ ∣∣[QH

h UH − I H
h UH

]T
l (k)

[
R9h
(
L H

h 9H
)]

l (k)

∣∣}. (22)

In this last expression, a term of the form [Vh]l (k), for some generic vectorVh onÄh, refers
to the 3× 1 subvector (component) ofVh corresponding to the fine-grid celll (k) within
the coarse-grid cellk. The summation in (22) is over all fine cells within thekth coarse
cell. For the purposes of adaptation,L H

h and QH
h are interpolation operators which map

coarse-grid vectors onto the fine grid via linear and quadratic interpolation, respectively.
The reconstruction operatorI H

h is defined in Section 3.4.
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At each adaptive iteration, a new cell size,H̃ k, is computed from the old one,Hk,
according to

H̃ k = κHk

(
ε̄

εk

)ω
, (23)

where ¯ε is the root mean square ofε over all coarse grid cells,ω is an underrelaxation factor
that ensures monotonic convergence to a final grid in the iterative adaptive procedure, and
κ is the constant which, at a particular iteration, allows the new cell sizes to add up to the
domain length. In the present computations, a conservative value ofω = 0.01 was used.

If the adaptive procedure were implemented as described above, spurious, high-frequency
modes would start to appear in the residual errors after several adaptive iterations. Eventu-
ally, these modes would manifest themselves as oscillations in the cell-size distributions.
Several attempts were made to overcome this difficulty. The most effective remedy for con-
trolling the oscillations was to use a small number of local least-squares smoothing sweeps
on the adaptation parameter at each adaptive iteration prior to computing the new cell-size
distribution. The high-frequency modes were effectively annihilated at each iteration before
they had a chance to grow. The quality of the error estimates were practically unaffected by
this procedure.

4.3. Numerical Results

A series of error convergence plots corresponding to the subsonic, isentropic transonic,
and shocked flow cases are presented in Figs. 7, 8, and 9, respectively. In each of these
plots, uniform and adapted-grid results are compared. Errors are measured with respect
to the exact (analytical) value of the functional. Five different grid sizes are considered:
10, 20, 40, 80, and 160 cells. During the adaptive runs, the total number of cells in each
grid was kept constant. After the adaptive process was completed for each grid and test

FIG. 7. Error convergence plot on uniform and adapted grids for the subsonic test case. Two sets of adaptive
results are presented, one based on equidistributing a measure of the interpolation error in the pressure and the
other based on the proposed adaptive criteria. Errors are measured with respect to the exact (analytical) value of
the functional (f (U ) ≈ 2.707).
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FIG. 8. Error convergence plot on uniform and adapted grids for the isentropic transonic test case. Two sets
of adaptive results are presented, one based on equidistributing a measure of the interpolation error in the pressure
and the other based on the proposed adaptive criteria. Errors are measured with respect to the exact (analytical)
value of the functional (f (U ) ≈ 1.558).

case, the proposed error estimation procedure was applied on the final adapted grid yielding
the corrected functional estimates plotted in the figure. Two adaptive criteria were used:
the proposed criteria (see Section 4.1) and a standard indicator based on a measure of the
interpolation error in the computed pressure [3, 27]. In particular, the standard method
strives to equidistribute the value ofβ over the entire domain, where

βk = H2
k

∣∣∣∣∂2 p

∂x2

∣∣∣∣
k

(24)

FIG. 9. Error convergence plot on uniform and adapted grids for the shocked test case. Two sets of adaptive
results are presented, one based on equidistributing a measure of the interpolation error in the pressure and the
other based on the proposed adaptive criteria. Errors are measured with respect to the exact (analytical) value of
the functional (f (U ) ≈ 2.138).



220 VENDITTI AND DARMOFAL

FIG. 10. Convergence in theL2(ÄH ) norm of the error in the stagnation pressure. Results are presented for
uniform grids, grids obtained using the adaptive strategy based on interpolation error in the computed pressure,
and grids obtained using the proposed adaptive scheme. Left: subsonic flow; center: isentropic transonic flow;
right: shocked flow.

is the product of the square of the cell sizeHk and the absolute value of the second derivative
of the pressure for cellk. A second-order, central difference was used to approximate the
second derivative in (24).

The results in Figs. 7, 8, and 9 show that the accuracy of the functionals on the final
adapted grids, before correction, are consistently better than their corresponding values on
uniform grids of equal size. After application of the corrections, the adaptive results based
on the proposed scheme become consistently more accurate than both the uniform grid
results and the results obtained using the standard adaptive scheme. Note that the corrected
functional values obtained using the standard scheme are generally less accurate than the
corresponding uniform grid results. The disappointing performance of the interpolation-
error indicator is likely due to the lack of a rigorous link between the second derivative in
the pressure and the error in the computed functional [27].

Figure 10 shows the convergence in theL2(ÄH ) norm of the error in the stagnation
pressure where

∥∥po − pH
o

∥∥2
L2(ÄH )

≡
∫ L

0

(
po − pH

o

)2
dx. (25)

In this last expression,po is the exact (analytical) stagnation pressure andpH
o is the finite

volume approximation onÄH . For the purposes of evaluating the integral in (25),pH
o is

assumed to vary linearly within each cell. Figure 10 is provided as an example of how
quantities other than the chosen functional converge using the proposed adaptive scheme.

The cell-size distributions corresponding to the final adapted grids using the proposed
adaptive procedure are plotted in Fig. 11 on a logarithmic scale. For each flow regime, it is
evident that the cell-size distributions corresponding to the 20-, 40-, 80-, and 160-cell grids
are similar in shape; however, they become better defined, and appear to be converging to
a fixed shape, as the total number of cells are increased. In each case, a clustering of cells
occurs near the throat region. This is particularly true for the transonic flow cases, where the
adjoint variables exhibit a singularity. In the shocked case, there is also a clustering of cells
near the shock. In all cases, a coarsening of the grid occurs at the ends of the nozzle where
the cross-sectional areas are constant. This effect becomes more pronounced as the total
number of cells is increased. Lastly, there is a slight clustering of cells in the two regions of
the nozzle where the constant-area portions of the duct join with the varying-area section.
At these two points, the second derivative of the nozzle area is discontinuous.
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FIG. 11. Converged cell-size distributions (final adapted grids) after application of the proposed adaptive
strategy to each of the quasi-1D Euler test cases considered. The total number of cells was fixed during each
adaptive run. Left: subsonic flow; center: isentropic transonic flow; right: shocked flow.

FIG. 12. Distributions of the adaptation parameterε (corresponding to the proposed adaptive strategy) on
a uniform, 160-cell grid for each of the quasi-1D Euler test cases considered. The adaptive algorithm strives to
equidistribute the value ofε over the entire domain, whereε is given by (22). Left: subsonic flow; center: isentropic
transonic flow; right: shocked flow.

FIG. 13. Distributions of the adaptation parameterε (corresponding to the proposed adaptive strategy) on the
final, adapted, 160-cell grid for each of the quasi-1D Euler test cases considered. The adaptive algorithm strives to
equidistribute the value ofε over the entire domain, whereε is given by (22). Left: subsonic flow; center: isentropic
transonic flow; right: shocked flow.
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FIG. 14. Converged cell-size distributions (final adapted grids) after application of a standard adaptive scheme
(based on the interpolation error in the computed pressure) to each of the quasi-1D Euler test cases considered.
The total number of cells was fixed during each adaptive run. Left: subsonic flow; center: isentropic transonic
flow; right: shocked flow.

FIG. 15. Distributions of the adaptation parameterβ (corresponding to a standard adaptive scheme based on
the interpolation error in the computed pressure) on a uniform, 160-cell grid for each of the quasi-1D Euler test
cases considered. The adaptive algorithm strives to equidistribute the value ofβ over the entire domain, whereβ
is given by (24). Left: subsonic flow; center: isentropic transonic flow; right: shocked flow.

FIG. 16. Distributions of the adaptation parameterβ (corresponding to a standard adaptive scheme based on
the interpolation error in the computed pressure) on the final, adapted, 160-cell grid for each of the quasi-1D Euler
test cases considered. The adaptive algorithm strives to equidistribute the value ofβ over the entire domain, where
β is given by (24). Left: subsonic flow; center: isentropic transonic flow; right: shocked flow.
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Figures 12 and 13 compare distributions of the adaptation parameterε on uniform and
adapted grids, respectively, for each of the test cases considered. The total number of cells
was fixed at 160 during each adaptive run. As discussed in the previous section, the proposed
adaptive algorithm strives to equidistribute the value ofε over the entire domain, where
ε is given by (22). It is evident from each of the plots in Fig. 13 thatε was effectively
equidistributed at the end of each adaptive run. It is interesting to note that the shapes of
the distributions ofε on the uniform grids are similar to the shapes of the corresponding
cell-size distributions of the final adapted grids (Fig. 11) after reflection of these curves
180◦ about the horizontal.

Figure 14 shows the cell-size distributions corresponding to the final adapted grids using
the interpolation-error indicator to drive the adaptive process. In the shocked flow case, the
indicator clusters cells near the shock, as expected. In contrast to the cell sizes in Fig. 11
(obtained using the proposed adaptive procedure), the interpolation-error indicator did not
cluster cells near the throat in the transonic flow cases. Furthermore, it did not cluster cells
near the points of discontinuous nozzle-area curvature. Underresolving the grid in these
regions appears to have been the cause of the degraded accuracy in the predicted functional
even when compared to the uniform grid results.

Figures 15 and 16 compare distributions of the adaptation parameterβ on uniform and
adapted grids, respectively, for each of the test cases considered.

The adaptive results presented in this section demonstrate that additional improvements
in the accuracy of the functional can be achieved by applying the proposed adaptive strategy
in conjunction with the error estimation procedure outlined in Section 2. It is anticipated,
however, that the full potential of grid adaptivity will not be realized until the procedure is
applied to multidimensional problems.

5. CONCLUSION

In this paper, an error estimation and grid adaptive strategy, based on a discrete adjoint
formulation, was presented for improving the accuracy of specified integral outputs (func-
tionals) from numerical solutions of partial differential equations. There are two stages to
the error estimation procedure. The first stage involves estimating the error in the func-
tional with respect to its value on a uniformly finer grid. The second stage involves a
multilevel extrapolation process whereby the exact value of the functional is estimated. The
main objective of the proposed adaptive procedure is to optimize the computational grid
with respect to maximizing the quality of the aforementioned error estimation procedure.
It was also shown that certain nonlinear contributions to the error can be reduced by the
adaptive process. Numerical results were presented for the quasi-1D Euler equations. Both
isentropic and shocked flows were considered. The error estimation procedure, applied on
uniformly spaced grids, approximately doubled the accuracy of the computed functionals.
Further improvements in accuracy were realized when the error estimation/correction pro-
cedure was applied in conjunction with the proposed adaptive strategy. A standard adaptive
method, driven by a measure of the interpolation error in the computed pressure, was imple-
mented and results were compared with those obtained from the proposed adaptive strategy.
Adapting based on the interpolation error consistently yielded less accurate results. This is
attributed to the lack of a rigorous link between the second derivative in the pressure and
the error in the computed functional [27].
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Finally, we note that grid adaptation for one-dimensional problems is seldom used in
practice. It was employed in this paper to demonstrate the error estimation/grid adaptive
concept in a relatively simple manner. It is expected that the adaptive strategy will play
a far more important role in multidimensional problems. This is where the full potential
of an adjoint-based adaptive strategy can be realized. In particular, if the problems under
consideration involve multiple scales and isolated flow features such as shocks, wakes,
and/or boundary layers, it is not always clear which parts of the computational grid should
be refined to enhance the accuracy of the functional while maintaining computational ef-
ficiency. The main benefit of a well-resolved adjoint solution is that it will quantify the
extent to which residual errors in the primal variables, at specific locations in the domain,
affect the cumulative error in the functional. In theory, this will be the case regardless of the
complexity or dimensionality of the flow problem under consideration. In practice, how-
ever, there are still several issues that need to be addressed upon extension of the proposed
procedure to multiple dimensions. Among these issues are the difficulties associated with
multidimensional interpolation and the definition of appropriate reconstruction operators,
especially on unstructured grids. There is also the whole topic of anisotropic grid adapta-
tion, which is particularly important for viscous flow computations. For such problems, the
adaptive criteria will need to incorporate directional information to account for dramatic
changes in length scales and in the types of transport phenomena (advection versus diffu-
sion) occurring in various portions of the domain. Initial efforts to apply the procedure to
2-D inviscid and viscous transonic flows are currently underway [26].

APPENDIX

A.1. Error Analysis

In this section, we consider nonlinear contributions to the error in the functional estimate
given by (6). We also revisit some of the developments of Section 4.1 and derive an explicit
expression for the duality gapD.

The exact, truncated, second-order, Taylor series expansion offh(Uh) about the coarse
mesh solution can be written as

fh(Uh) = fh
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whereh ≤ δ ≤ H . In this expression, [∂2 fh/∂U2
h ]|U δ

h
is the Hessian matrix of second deriva-

tives evaluated atU δ
h . The vectorU δ

h represents the mapping ontoÄh of the solutionUδ,
corresponding to a mesh3Äδ, which is embedded withinÄH , with average element (or cell)
sizeδ.

Similarly, the residual operatorRh(Uh) can be expanded as

Rh(Uh) = Rh
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(
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)+W, (ii)

3 Note that a mesh characterized byδ and embedded withinÄH can only be associated with a rational value of
δ/h. In general, the value ofδ/h in (i) will be nonrational. Strictly, the results of this section do not require that
δ be associated with a physical mesh and hence take on discrete values. Instead,δ should be regarded here as a
continuous variable.
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where
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for each componentj of the vectorW. The term [∂2(Rh) j /∂U2
h ]|U δ′

h
represents the Hessian

of the j th component of the residual vector, evaluated atU δ′
h . Furthermore,h ≤ δ′ ≤ H ,

andU δ′
h is defined in the same manner asU δ

h was above.
From (ii), one can symbolically obtain the solution error as
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Using (i), (iv), and the definition of the fine-mesh adjoint given by (7), we arrive at the
following expression for the error in the computable correction:
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Finally, transposing (18), right-multiplying the result by [∂Rh/∂Uh|U H
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using (iv) leads to

(
9h|U H

h
− L H

h 9H
)T

Rh
(
U H

h

) = −R9h
(
L H

h 9H
)T

[
∂Rh

∂Uh

∣∣∣∣
U H

h

]−1

Rh
(
U H

h

)
= R9h

(
L H

h 9H
)T

[(
Uh −U H

h

)+ [∂Rh

∂Uh

∣∣∣∣
U H

h

]−1

W

]

= R9h
(
L H

h 9H
)T(

Uh−U H
h

)−(9h|U H
h
− L H

h 9H
)T

W, (vi)

from which the duality gapD is obtained as
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